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Theorizing Trikāla: A Generalized Intervallic Approach to 
Pulse Transformation in South Indian Carnatic Music1 

Robert Wells 
OUTH Indian Carnatic (classical) music, a centuries-old musical tradition grounded in 
Hindu spiritual devotion, is built upon incredibly intricate rhythmic/metric foundations. 

In this music, the constant flow of time is represented by an internalized metric cycle called 
the tāḷa, consisting of beats (akṣaras) that are grouped into larger units: āvartas, which resemble 
Western measures and consist of single cycles of tāḷa, and angas, which are characteristic 
subdivisions of each āvarta.  Moreover, performers and informed listeners track location in the 
tāḷa using kriyās, which are standardized hand gestures that include claps, waves, and finger 
counts. 

 Figure 1 illustrates these concepts with respect to Ādi tāḷa, the most common Carnatic 
tāḷa. In this diagram, observe that there are eight beats per tāḷa cycle (āvarta), and each cycle is 
subdivided as 4 + 2 + 2, yielding three angas. Moreover, each anga corresponds to a specific set 
of kriyās, as illustrated in the figure. 

While a soloist’s melodic/rhythmic phrasing in a Carnatic performance often reinforces 
the underlying tāḷa through characteristic gestures and rhythmic patterns, these phrases may 
also express temporary tension with the tāḷa.2 A central Carnatic improvisational form that 
exploits both types of relationship with the tāḷa is the three-part rāgam-tānam-pallavi form, 

 

Figure 1. Basic Carnatic rhythmic/metric concepts in Ādi tāḷa (4 + 2 + 2). 
                                                
1. This is a significantly expanded version of a paper presented at the Fourth International Conference on 
Analytical Approaches to World Music held in New York City, USA, June 8–11, 2016.  
2. Carnatic musicians use the term sarvalaghu (“time flow”) to describe musical gestures and patterns that 
reinforce the tāḷa and kaṇakku (“calculation”) to refer to the mathematical planning necessary to execute patterns 
that create tension with the tāḷa. See Nelson (2000, 153–56). 
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often abbreviated as “RTP.” The rāgam section that opens RTP performances is an unmetered 
melodic improvisation in free rhythm that introduces the primary rāga, or melodic mode.3  
The tа̄nam section also consists of unmetered melodic improvisation, but the soloist now 
incorporates a rhythmic pulse. In the case of vocal RTP performances, this pulse is generated 
by percussive vocal syllables. Finally, the pallavi section comprises a set of improvised, tāḷa-
bound variations on a short line of melody, which is generally texted even if the variants are 
not. 

While the pallavi section progresses through several distinct improvisational stages, each 
with characteristic parameters and expectations, this study will primarily investigate a 
variation technique known as trikāla.4 This performance technique challenges the listener’s 
sense of tāḷa while demonstrating the soloist’s control over musical time. In trikāla, the pallavi 
melody (or other Carnatic melody) is presented in several different speeds over the constant 
tāḷa, and while this traditionally involves three speeds (original speed, double or half speed, 
and quadruple or quarter speed), a performer may exploit many more speeds than this.5 An 
important question, then, is how trikāla can function locally and globally to generate tension 
with the tāḷa and shape rhythmic flow in RTP and other Carnatic forms. The current article 
seeks to investigate this question in a quantitative manner that will allow precise, dynamic 
relationships to come to the surface in trikāla-based musical excerpts.  

To see how trikāla can function in Carnatic music, consider an RTP performance by 
T. Viswanathan, L. Shankar, and T. Ranganathan (1973). The pallavi is in the asymmetrical 
Miṣra Cāpu tāḷa, which consists of seven quick beats partitioned as 3 + 2 + 2.6 This pallavi 
contains a remarkable instance of trikāla technique, as Widdess (1977) has previously noted.7 
Figure 2 illustrates the main pallavi melody, which may be heard in Audio Example 1.  

Because the current study’s analytical focus will be on rhythm and meter, I have not 
included a detailed depiction of the melodic ornaments (gamakas), but have limited pitch 
content to Widdess’s melodic simplification.8 Unlike Widdess, though, I have chosen to bar the  

                                                
3. Indian rāgas are not merely series of pitches within the octave, but are characterized by specialized sets of 
ornaments (gamakas), characteristic phrases, and even extramusical ideas. See Viswanathan and Cormack (1998), 
Morris (2006, 307–8), and Schachter (2015). 
4. In addition to the trikāla section, which forms this paper’s focus, standard pallavi sections include the niraval, 
consisting of improvisations that maintain the basic rhythmic structure of the pallavi; the swara kalpana, whose 
improvisations employ sargam, or melodic solfège syllables; and the ragamalika (“garland of ragas”), in which the 
performer improvises in a series of different ragas. For more on these pallavi stages, see Subramaniam and 
Subramaniam (1995, 87–88), Krishna (2013, 160–61), and Field (2018). 
5. For a particularly virtuosic example, see Subramaniam and Iyer’s performance of the varṇam Jalasaksha (rāga 
Hamsadhwani; Ādi tāḷa) on Subramaniam and Iyer (2013). The recording can also be heard at 
https://youtu.be/DqxFpF4R-G0. In this performance, the opening melody is presented in no fewer than thirteen 
different speeds. I thank Michael Tenzer for bringing this example to my attention. 
6. The kriyās consist of claps with the back of the hand on beats 1 and 2 and palm claps on beats 4 and 6. 
7. The trikāla section comprises the final three minutes of Viswanathan, Shankar, and Ranganathan (1973), Side 1. 
8. Regarding pitch, the improvisation is in rāga Shaṅkarābharaṇam, whose unadorned form (without gamakas) is 
analogous to the Western major scale. 
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Figure 2. RTP performance by T. Viswanathan, L. Shankar, and T. Ranganathan (1973), pallavi melody. 
Transcription after Widdess (1977), with metric annotations by the author. 

Audio Example 1. Pallavi melody from RTP performance by T. Viswanathan, L. Shankar, and 
T. Ranganathan (1973), with referential chimes added to mark the first beat of each tāḷa cycle. 

melody with respect to the tāḷa and angas, with the melody starting on beat 2.9 Specifically, 
solid double bar lines mark out full tāḷa cycles (āvartas), while solid single bar lines demarcate 
angas. Above the staff, I represent the rhythms of the melody without ties or bar lines to 
facilitate identifying rhythmic patterns and groupings. Above this layer, I have provided a more 
flexible “barring” corresponding to Widdess’s suggested metric units within the melody. 
Finally, I have included labels corresponding to Widdess’s sectioning of the melody, consisting 
of an opening A phrase, a B phrase with a slower pulse, and a reprise of A (63). 

Figure 3 presents the opening portion of the trikāla section, which progressively 
augments and diminishes the pallavi melody over constant tāḷa while incorporating subtle 
variations. In this lengthier transcription, double dotted bar lines in the “Performed ‘Meter’” 
layer bound complete A–B melodic statements.10 Observe that the pulse units in this layer 
expand well beyond what occurred in the original melody, as illustrated in Audio Example 2. 
Additionally, note that the performed “meter” alternates between apparent 2+2+3 subdivisions 
for the A section of the melody and 3+2+2 for the B section; thus, not only are the magnitudes 
of the melodic pulse units flexible, but also the pulse units’ arrangements.11 

                                                
9. Because the melody consistently begins on beat 2 of the tāḷa throughout the trikāla section and all changes of 
pulse unit start from this beat (see Figure 3), Widdess (1977, 63) bars his transcription so that the second beat of the 
tāḷa is “beat one” and the basic subdivisions of the tāḷa are 2+2+2+1 rather than 3+2+2. This decision is largely a 
matter of convenience, as Widdess represents changes of pulse using time signatures, which are cleaner to notate 
at the beginnings of measures than mid-measure. 
10. Note that the excerpt opens with a B statement. As Widdess (1977, 64) points out, this partial melodic statement 
is completed by a final A statement at the end of the trikāla section. 
11. See Widdess (1977, 63–64) regarding the metric subdivisions of the pallavi. Additionally, Subramaniam and 
Subramaniam (1995, 75) point out that the seven beats of Miṣra Cāpu tаḹa may be grouped as 3+2+2 or 2+2+3, which 

http://www.aawmjournal.com/sound/2020a/Wells_Audio_001.mp3
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Figure 3. RTP performance by T. Viswanathan, L. Shankar, and T. Ranganathan (1973), opening of 
trikāla section. Transcription after Widdess (1977), with metric annotations by the author. 

Audio Example 2. RTP performance (Viswanathan, Shankar, and Ranganathan 1973), opening of 
trikala section. 

Widdess makes fascinating observations about the effect of the trikāla usage here, 
pointing out the various “tempos” in which the pallavi melody is presented (62) and 
mentioning the evolving misalignment of claps with the melody (66).12 How, though, might one 
achieve the aforementioned goal of making such statements more precise and quantifiable, 
and delve even deeper into the tensions between melody and tāḷa in trikāla-based 
performance? More specifically, how might expansion and contraction processes in Carnatic 
music be modeled numerically?  

In addition to Widdess’s study, numerous others have investigated tāḷa and 
rhythmic/metric conflict in Carnatic music in varied ways. Morris has discussed tensions 
between characteristic rhythmic cadences and the underlying tāḷa in Carnatic performances 
(2000), as well as classifications of tāḷas based on their internal properties (1998), although 
trikāla technique is not a primary focus of his work. Subramanian, Wyse, and McGee (2011) 
and Tenzer (2011) emphasize trikāla technique more heavily, the former investigating the effect 

                                                                                                                                                       
suggests that the alternating subdivisions in the “performed” meter reflect properties of the underlying tāḷa. 
12. The claps in the recording mark the beginnings of the second and third angas of the tāḷa—i.e., beats 4 and 6. 

http://www.aawmjournal.com/sound/2020a/Wells_Audio_002.mp3
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of performed speed on melodic ornamentation and the latter comparing augmentation-based 
processes in Carnatic to those in other musics. Various other sources provide useful 
theoretical, cultural, historical, and philosophical insights into South Indian conceptions of 
rhythm and time (e.g., Śarma 1992; Subramaniam and Subramaniam 1995; Ramanathan and 
Venkataram 1997; Krishna 2013), including discussions of trikāla technique from a broader 
perspective.  

While the above studies approach trikāla from a theoretical or analytical standpoint, 
other sources take a more performative slant. Nelson, for instance, not only provides detailed 
analyses of trikāla-based Carnatic rhythmic/metric structures, but relates these structures to 
experienced mridangam players’ creative processes (1991) and presents techniques for vocally 
performing these structures (2008; 2019). Iyer (1988) emphasizes performance and 
improvisation to an even greater degree. In addition to discussing how to construct 
sophisticated rhythmic phrases within various tāḷas, he provides practical techniques and 
formulas for determining when to begin a phrase so that it ends at a desired point in the tāḷa 
(e.g., sam, the first beat of a tāḷa cycle). 

The current study seeks to expand upon the previous studies’ insights by bringing trikāla 
technique more squarely into the realm of contemporary mathematical music theory, where it 
may be examined in a new light. This said, the study is certainly not an attempt to “replace” 
traditional methods of Carnatic music, which facilitate extremely high levels of rhythmic 
complexity. Instead, the article seeks to provide useful tools of an analytical, rather than 
performative, nature. To express the dynamic and quantitative properties of South Indian 
metric structures, I adopt a theoretical approach based on David Lewin’s concept of the 
generalized interval system, or GIS, discussed in Generalized Musical Intervals and Transformations 
(1987)—henceforth, GMIT. Intuitively, a GIS is a musical space in which one can measure 
abstract “intervals” satisfying special mathematical properties.13 

Significantly, nothing in Lewin’s GIS definition requires that intervals be measured 
between pitches or pitch classes. Indeed, many of Lewin’s own examples in GMIT consider 
harmonic or rhythmic spaces.14 For the current project, I will draw upon the GIS Met (Wells 
2015a; 2015b; 2017), a metric GIS derived from conflicting metric layers. Though Met was 
primarily developed to model evolving conflict between metric layers in Western music, it is 
easily adaptable to Carnatic rhythmic/metric processes. 

In the next section of this article, then, I introduce the GIS Met and demonstrate its 
applications to pulse expansion and contraction processes in Carnatic music. The following 
section will then apply these ideas to analyses of several traditional melodic exercises called 
alankārams, which are typically performed in three or four speeds over constant tāḷa. In the 
final main section of the article, I revisit the RTP performance discussed by Widdess and 
                                                
13. A brief introduction to GIS theory appears in the next section. For a full, formal definition of the GIS, see 
Lewin’s (1987, 26) Definition 2.3.1. 
14. See, for instance, Lewin’s (1987, 22–25; 60–81) Examples 2.2.1–2.2.4, 2.2.6, and the “time span GIS.” 
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suggest new perspectives and analytical insights into the evolving tension between surface 
melodic phrasing and the underlying tāḷa. Beyond what this analysis will reveal about the RTP 
performance in question, the analytical techniques employed will have noteworthy 
implications for rhythmic/metric analysis of Carnatic music more generally.  

THEORETICAL FRAMEWORK: TRIKĀLA AND MET  

Deeper consideration of the rhythmic/metric subtleties of examples like the 
aforementioned RTP performance necessitates laying the theoretical groundwork, beginning 
with Lewin’s notion of the generalized interval system (GIS). To illustrate this abstract 
theoretical structure, Figure 4 depicts the GIS from Lewin’s (1987, 17) Example 2.1.2, which 
measures directed semitone distances between equally tempered chromatic pitches.  

Appearing in the figure are the three essential components of any GIS: a GIS “space” (S), 
a mathematical group of “intervals” (IVLS),15 and an “interval function” (int) that maps pairs of 
elements from S into IVLS. The space, in this case, is the infinite chromatic gamut, represented 
by an infinite keyboard. The int function measures intervals by counting the number of 
semitones, in a positive or negative direction, from one pitch to another. The result is an 
integer-valued interval, which may be added to other integer-valued intervals. 

 

Figure 4. Illustration of the Lewinian GIS for calculating semitone intervals between pitches. 

                                                
15. A group is a mathematical set endowed with an operation (+, ×, etc.) satisfying several properties. First, 
operating on a pair of elements yields an element that is still in the original set (closure). Moreover, the group 
must contain an identity element, and each element of the group must have an inverse. Finally, the group 
operation must be associative. See Fraleigh and Katz (2003, 37–38). 
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The bottom portion of Figure 4 illustrates, more specifically, how intervals can be 
measured and combined. To calculate the interval from F4 to A4, for instance, one may count 
half steps:  int(F4, A4) = 4 semitones. Similarly, int(A4, C5) = 3 semitones. The wider, 7-semitone 
interval from F4 to C5 illustrates an important condition that all GISs must satisfy: the interval 
from F4 to C5 is the sum of int(F4, A4) and int(A4, C5). In general, for any pitches r, s, and t in S, 
Lewin (1987, 26) requires that int(r, s) + int(s, t) = int(r, t). The figure demonstrates another 
necessary GIS property as well: assume a starting pitch s = F4 and interval i = 4. Then if one 
begins at s and traverses the interval i, the result is a unique pitch, t = A4. In general, for any 
point s and interval i, there must exist a unique t lying the interval i from s.16 In other words, a 
single interval from s cannot lead to two different places in the GIS. 

The GIS Met, which will form the basis for this study’s metric analyses of Carnatic music, 
is of a different sort, with points and intervals modeling time rather than pitch. The 
foundation of Met, as described by Wells (2015a; 2017), is an essential conflict between two 
metric layers: the X-layer, which is a referential, cognitively internalized metric layer, and the 
Y-layer, which is a heard or sonically articulated metric layer. For instance, in Western 
common-practice music, the notated barring might correspond to the X-layer while a 
conflicting heard meter could form the Y-layer. In Carnatic music, the underlying tа̄ḷa might 
correspond to the X-layer, while a soloist’s rhythmic-melodic phrasing could define the Y-
layer.17 

A quintessential example of conflicting X- and Y-layers appears in Figure 5, from the 
Gigue from J. S. Bach’s English Suite No. 5 in E minor, BWV 810. This excerpt features a two-
measure hemiola (mm. 42–43), in which two bars of notated 3/8 sound like three bars of 2/8, as 
indicated by the dotted bar lines. The excerpt can be heard in Audio Example 3. Because of the 
hemiola, the solid arrow above the score spans two heard “2/8” bars that correspond to 1 1/3 
notated 3/8 bars. Consequently, the heard downbeat shifts from beat 1 of the notated measure to 
beat 2—a shift by one eighth note. These three pieces of information—number of notated 
measures (X-measures) spanned, number of heard measures (Y-measures) spanned, and shift 
of heard downbeat (Y-downbeat shift)—form the heart of the GIS Met.  

The numerical and graphic annotations in Figure 5 provide a more detailed depiction of 
the workings of Met. In the figure, the aforementioned dotted bar lines mark out the local Y-
meter of 2 (with an eighth-note pulse), while the X-meter, represented by the solid bar lines, 
maintains a constant value of 3.18 Below the score are time point spaces SX and SY  

                                                
16. More precisely, for each s ∈ S and i ∈ IVLS, there exists a unique t ∈ S such that int(s, t) = i (Lewin 1987, 26). 
17. In determining the Y-layer, I will use what Lerdahl and Jackendoff (1983, 4) call “the final state of [the listener's] 
understanding”; this involves carefully reflecting on the rhythmic/metric perceptions that a given passage 
suggests, and then determining a final metric interpretation for the passage. “Final-state analysis” has not been 
without critics, as some consider it a static and one-dimensional approach to metric perception (Cady 1983; 
London 1997; Mirka 2009). However, as Temperley (2001, 14–19) has argued, this approach to meter can not only 
meaningfully model the unfolding listening experience, but also account for metrical revisions. 
18. When I refer to “X-meter” and “Y-meter,” the term “meter” simply refers to the number of pulses between 
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Figure 5. Summary of Met, using a simple hemiola from J. S. Bach’s English Suite No. 5 in E minor, 
Gigue, mm. 41–44. 

Audio Example 3. Hemiola in J. S. Bach’s English Suite No. 5 in E minor, Gigue, performed by András 
Schiff (1990).  

corresponding to the X- and Y-layers, respectively. In these spaces, bracketed integers 
correspond to eighth-note time points and black dots represent downbeats. A third, cyclic 
space, SB, appears above SX; this is the Y-downbeat shift space. Because the X-meter is 3, the 
possible Y-downbeat locations are beats 1, 2, 3, and all other rational beat locations b such that 
1 ≤ b < 4. More simply, since the notated meter is 3/8, SB is an idealized three-beat measure 
within which the heard downbeat may shift.19 

The remaining annotations in Figure 5 illustrate how to measure the Met interval from 
the start of the hemiola at [4] to the F-sharp major chord at [8]. First, these musical events must 
be mapped into Met space. The chord initiating the hemiola occurs at time point [4] within SX 
and SY, and the local Y-downbeat occurs on beat 1. Thus, this chord corresponds to the point 
                                                                                                                                                       
downbeats in a given layer. This is not to deny a richer metric hierarchy consisting of layers above and below the 
basic pulse layer, however, as discussed by Lerdahl and Jackendoff (1983), London (2004), and Mirka (2009), 
among others. 
19. The components of Met shown in Figure 5 may suggest aspects of Inner Metric Analysis, which distinguishes 
between “inner” metric structures determined by note onsets and equidistant pulses and “outer” metric structures 
determined by time signatures and bar lines (Netske and Noll 2001; Volk 2008). While Inner Metric Analysis 
could certainly be used to justify a particular Y-metric reading, this form of analysis is not absolutely necessary 
for this paper’s purposes. In particular, many of my Y-metric interpretations will depend on parameters beyond 
inner metric structure, such as melodic shape and phrase structure. 

http://www.aawmjournal.com/sound/2020a/Wells_Audio_003.mp3
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([4], [4], 1) in Met space. The chord at [8], on the other hand, maps to the point ([8], [8], 2), as it 
occurs at [8] in SX and SY spaces and sits within a Y-measure whose downbeat is on beat 2 of 
the X-measure.20 The cumulative Met interval, then, follows from prior observations: from [4] 
to [8], there are 1 1/3 X-measures (notated measures), 2 Y-measures (heard measures), and a Y-
downbeat shift of +1 (from beat 1 to beat 2). Thus, the overall Met interval over the span in 
question is (1 1/3,	2,	+1). It is important to note here that Y-downbeat shifts are calculated 
modulo the notated meter.  In this case, the Y-downbeat shift is calculated mod 3 because of 
the notated 3/8 meter, so the +1 Y-downbeat shift could be rewritten as −2. Ultimately, the value 
chosen depends on the analyst’s goals. 

More formally, Met may be summarized as follows. First, Met is an example of a direct 
product GIS, which consists of multiple independent GISs fused to form a single, more 
complex GIS. Intervals in a direct product GIS are ordered n-tuples of intervals from the 
component GISs (Lewin 1987, 45). For instance, if G is a GIS containing the interval “4” and H 
contains the interval “−1,” then the product GIS G×H must contain the interval (4, −1).  

The GIS Met is a product of three independent GISs, one that counts bars in X-meter 
space, another that counts bars in Y-meter space, and a third that measures the Y-downbeat 
shift within SB space (Wells 2017, par. 30). Points in Met space are ordered triples of the 
following form:  

(SX time point, SY time point, Y-downbeat location within X-measure). 

In the spirit of Lewin, however, this study’s primary concern will not be these points, but the 
intervals between the points, which take the following form: 

(#X-measures, #Y-measures, net Y-downbeat shift with respect to X). 

While the first two coordinates will be rational values, assuming one is measuring 
between rational time points, the third coordinate (though also rational) is calculated modulo 
the X-meter, as discussed above.21 This value, when nonzero, will always be signed (“+2,” “−1/2,” 
and so forth). Finally, while the full, mathematical definition of Met implies independence of 
the component coordinates, the current study’s applications of Met imply, in practice, a third 
coordinate that depends upon the first two. 

The question of applying Met to Carnatic music must now be addressed. In Figure 6, I 
have transcribed a portion of the kriti Jagadānandakāraka by revered South Indian composer 
Tyāgarāja.22 The transcribed excerpt may be heard in Audio Example 4, which is a pedagogical  

                                                
20. Note that moving to time point [9] also yields a Y-downbeat on beat 2, as a single Y-measure can only have a 
single downbeat location—i.e., the corresponding Met point is ([9], [9], 2). 
21. For the remainder of this article, I consistently assume a constant X-meter. While the construction of Met does 
permit multiple X-meters, the GIS is more complicated to use in these circumstances. For a discussion of these 
complications and necessary workarounds, see Wells (2017, pars. 27–29). 
22. The kriti is a sophisticated form of Hindu devotional song consisting of three sections: the pallavi, the 
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Figure 6. Tyāgarāja, Jagadānandakāraka, excerpt from caraṇam section, transcribed by the author. 

Audio Example 4. Tyāgarāja, Jagadānandakāraka, first caraṇam, performed by Shivkumar 
Kalyanaraman.  

recording by Shivkumar Kalyanaraman that I have chosen for its melodic clarity.  

I represent the piece’s Ādi tāḷa (4 + 2 + 2) using eight-beat measures subdivided into three 
angas each, where double solid bar lines mark out tāḷa cycles and single solid bar lines 
represent anga subdivisions. Observe, however, that near the end of the second cycle, a series 
of repeated melodic/rhythmic shapes lasting five “sixteenths” apiece initiates strong tension 
with the tāḷa. At the end of the excerpt appear several units of three, which are partly 
generated by long vowels in the text (in bold) and partly by the placement of longer rhythmic 
values. In between the fives and threes lies a mediating four-unit. The dotted bar lines 
interpret these melodic units as defining a Y-layer that conflicts with the eight-beat tāḷa (X-
layer). It is worth noting that the Y-layer over the conflicting region demonstrates the 
traditional gopucca or “cow-tail” rhythmic shape, consisting of progressively shorter rhythmic 
units.23 

The tension with the tāḷa in the aforementioned region can be further quantified using 
Met intervals, as shown in Figure 7. The figure illustrates how to measure the Met interval  
                                                                                                                                                       
anupallavi, and one or more caraṇams. Traditionally, the pallavi returns in abbreviated form after the anupallavi 
and each caranam, thus serving as a sort of refrain. Figure 6 presents the first of ten caraṇams in 
Jagadānandakāraka. For more on the kriti and its significance in Carnatic music, see Viswanathan and Allen (2004, 
15–29). 
23. Nelson (2008, 19) points out that the gopucca shape is “perhaps the most widely used design type in Karnatak 
rhythm.” Other standard rhythmic shapes (yati) include srotovaha (“river mouth”), damaru (“hourglass”), mridanga 
(named for the mridangam drum), sama (uniform shape), and visama (random shape); see Nelson (2000, 147). 
Subramaniam and Subramaniam (1995, 73–74) use the same terms to classify tāḷas according to the sizes and 
distributions of their angas. 

http://www.aawmjournal.com/sound/2020a/Wells_Audio_004.mp3
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Figure 7. Calculating Met intervals in Carnatic music. 

across one of the 5-units. Namely, given eight-beat tāḷa cycles, where the quarter-note 
represents the basic pulse, the bounded melodic unit spans 5/32 of a cycle (X-measure) and one 
Y-measure, with an overall Y-downbeat displacement of +1 1/4. Thus, this 5-unit (like those that 
follow) spans the Met interval (5/32, 1, +1 1/4). 

Figure 8 fills in the remaining intervals over the latter portion of the Tyāgarāja excerpt. 
Starting with the 5-units, the music generates a series of four (5/32, 1, +1 1/4) intervals, a mediat-
ing (1/8, 1, +1) interval, and four (3/32, 1, +3/4) intervals leading into the pallavi return. Now, ob-
serve that every interval I have highlighted spans exactly one Y-measure. By comparison, one 
could also measure across the entire conflicting region to yield the cumulative interval (1 1/8, 9, 
+1). Breaking down a larger interval into subintervals that span single Y-measures is often ana-
lytically useful, as it reveals the larger interval’s underlying components, much like the prime 
factorization of a positive integer. This special intervallic decomposition, in which an interval  

 

Figure 8. Met intervals in Tyāgarāja’s Jagadānandakāraka. 
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is broken down at Y-downbeats, I call the Y-decomposition of the larger interval.24 Numerically, 
the Y-decomposition of the interval spanning the metrically conflicting passage in question is  

(1 1/8, 9, +1) = 4(5/32, 1, +1 1/4) + (1/8, 1, +1) + 4(3/32, 1, +3/4), 

where the cumulative interval appears on the left and the subintervals appear on the right. 
One could similarly define decompositions that subdivide intervals at X-downbeats or at both 
X- and Y-downbeats, although these decompositions will not be of interest for the current 
project. More significant will be a decomposition unique to Carnatic music, the anga 
decomposition, which I define in a later section. 

The final theoretical building block for the current study is how to use Met to model 
trikāla technique. As such, consider a simple exercise adapted from Viswanathan and Allen 
(2004, 39) that I have transcribed and annotated in Figure 9. This trikāla exercise consists of a 
solkaṭṭu (rhythmic solfège) pattern that is performed at progressively faster speeds against 
constant Ādi tāḷa. Under the assumption that each statement of the solkaṭṭu pattern defines 
one Y-measure, the Met intervals transform each time the speed increases, as shown in the 
Figure 9. 

In Met terminology, a series of “intervallic contractions” occur from one āvarta (tāḷa cycle) 
to the next. Specifically, intervallic expansion and contraction involve scaling a span of Y-
measures by some positive rational value k over a constant X-meter.25 Intervals formed at 
different levels of metric hierarchy may thus be viewed as transformations of one another. 
Figure 10 illustrates intervallic contractions and expansions generated by standard melodic  

 

Figure 9. Trikāla technique in a simple Ādi tāḷa solkaṭṭu exercise, adapted from Viswanathan and Allen 
(2004, 39). 

                                                
24. For the formal definition of the Y-decomposition, see Wells (2015a, 90–94). 
25. For a full, mathematically formal theory of intervallic expansions and contractions, see Wells (2015a, 103–34). 
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Figure 10. Intervallic contractions/expansions generated by diminution and augmentation of a melody. 

diminution and augmentation. Here a simple melody is transformed to appear at various 
levels of pulse over a constant 3/4 meter. Notice, however, that the changing Met intervals in the 
diagram are responding not to specific note values or melodic content, but to the changing Y-
pulse unit; thus, intervallic expansion and contraction are more generalized operations than 
traditional augmentation or diminution. 

At this point, one might wonder if Met intervals expand and contract with any sort of 
numerical predictability. In fact, the following two propositions, proven in Wells (2015a), 
precisely predict the numerical outcome of any rational expansion/contraction operation: 

Proposition 1 (Wells 2015a, 117; 2017, par. 43): For some x, y ≥ 0, suppose (x, y, a) is a Met 
interval measured between two Y-downbeats, and assume the X-meter has constant value 
m. Then for any positive rational k, the k-expansion/contraction of (x, y, a) is given by  

(kx, y, kxm). 

Proposition 2 (Wells 2015a, 117–18; 2017, par. 44): Suppose (x, y, a) is a Met interval where x, 
y ≥ 0, and assume the X-meter has constant value m. Then for any positive integer k, the 
k-expansion of (x, y, a) is given by  

(kx, y, ka). 

Note that while Proposition 1 requires that the starting interval be measured between Y-
downbeats, Proposition 2 does not. On the other hand, while Proposition 2 only applies to 
positive integer expansions, Proposition 1 allows k to take on any positive rational value. 
Additionally, it is essential to remember that the values in the third coordinate (Y-downbeat 
shift) are calculated mod m. 

For example, using these propositions, one could calculate the numerical 1/2-contraction 
of the first (1, 1, 0) interval in the above Ādi tāḷa exercise (Figure 9). Given that the expansion 
value (k = 1/2) is not an integer, Proposition 2 does not apply. Because the interval (1, 1, 0) spans 
two Y-downbeats and k = 1/2 is rational, however, Proposition 1 applies. The exercise’s constant 
X-meter of 8 means that m = 8; thus, the interval (x, y, a) = (1,	1,	0) contracts to (kx, y, kxm) = (1/2 ⋅ 
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1, 1, 1/2 ⋅ 1 ⋅ 8) = (1/2, 1, +4). Observe that this result matches the interval values appearing in the 
second tāḷa cycle of Figure 9. 

Figure 11 fills in the remaining intervallic contractions in the trikāla exercise: there are 
two consecutive 1/2-contractions and, from the first āvarta to the third, a 1/4-contraction. 
Additionally, Figure 11 indicates the cumulative interval over each tāḷa cycle (boldface intervals 
to the right). Observe that despite internal Y-downbeat shifting in the second and third cycles, 
the Y-downbeat shift for each cycle as a whole is zero. Additionally, while the X-coordinate of 
each interval is a constant 1, the Y-coordinates are successively doubled. As such, these 
intervals depict a balance between stability and change that undergirds the rhythmic exercise. 
As the next two sections will show, however, rhythmic/metric stability and change can operate 
at much higher levels of complexity than what appears in this simple exercise. 

ANALYSIS: PURANDARA DĀSA’S ALANKĀRAMS 

Having established this study’s central theoretical framework, I now turn to an important 
set of traditional exercises that introduce budding students of Carnatic music to trikāla 
technique in various tāḷas. These five-hundred-year-old exercises, called alankārams, are part 
of a progressive curriculum devised by Purandara Dāsa, generally considered the “father” of 
Carnatic music. Typically, students progress through four major groups of exercises in rāga 

 

Figure 11. Trikāla technique yielding intervallic contractions, after exercise from Viswanathan and 
Allen (2004, 39). 
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Māyāmāḷavagowḷa,26 with each exercise group emphasizing a different technical challenge, 
before attempting the alankārams.27 Students are expected to learn all exercises, including the 
alankārams, in three to four speeds—that is, using trikāla technique. Unlike the initial 
exercises, which are all in Ādi tāḷa, the alankārams require proficiency in all seven of the main 
classifications of tāḷa, creating new, more challenging contexts for trikāla.28 Figure 12 illustrates 
the alankāram for Tiṣra Jāti Tripuṭa tāḷa (seven beats partitioned as 3 + 2 + 2). The kriyās are 
“clap, pinky, ring, clap, wave, clap, wave.”29 Below each note is a corresponding sargam (melodic 
solfège) syllable, where I have arbitrarily chosen the note C to represent “sa,” the first note of 
the rāga.30 

To complete the exercise in “first speed” (one syllable per beat), as shown in Figure 12, the 
student sings the opening seven-note pattern from “sa,” “ri,” “ga,” “ma,” and then “pa.” An 
inversion of the original pattern is then sung starting on high “sa,” “ni,” “dha,” “pa,” and “ma,” 
with the final iteration ending back on the original “sa.” From this point, the student repeats 
the exercise in second speed (two syllables per beat), third speed (four syllables per beat), and 
possibly fourth speed (eight syllables per beat), each of which introduces a new form of 
tension with the underlying tāḷa. In Figures 13 and 14, I present transcriptions of the complete 
second- and third-speed versions of the exercise. Observe that in third speed, in order for the 
performer to finish at the end of a tāḷa cycle, the entire alankāram must be performed twice.  

Part of the alankāram’s complexity in second and third speeds is that the student must 
manage three incommensurate values at once: division of the beat into two or four equal parts; 
a seven-beat tāḷa; and a five-fold repetition of the initial seven-syllable pattern in each half of 
the alankāram. To unravel how these tensions play out over the course of the exercise, and 
depict how the student’s performative experience evolves, I now consider the Met intervals at 
play. Figure 15 provides a Met-intervallic analysis of the opening seven-syllable pattern in first, 
second, and third speeds.  

                                                
26. Māyāmālavagowla resembles the “double harmonic” scale—namely, a major scale with the second and sixth 
notes flatted. 
27. The saraḷi variṣai provide an introduction to simultaneously working with melody, rhythm, and tаḹa; the jaṇṭai 
variṣai teach proper ornamentation of repeated notes; the mēlsthāyi variṣai expand the student’s command of 
different registers; and the dāṭu variṣai provide practice with melodic leaps within the rāga. The entire set of 
exercises, in traditional notation, can be found in Ravikiran (2012). 
28. The traditional tāḷa scheme (sūḷādi sapta tāḷa) consists of seven tāḷa types, each of which contains five 
individual tāḷas, creating a 35-tāḷa scheme overall. In addition to the new metric challenges the alankārams 
represent, these exercises mark the pedagogical stage at which students begin learning gamakas, characteristic 
vocal ornaments that help define each rāga (see Pesch 1999, 80–81). 
29. This tāḷa is in the same family (Tripuṭa) as Ādi tāḷa; note that the only difference between the two is the length 
of the first anga (three vs. four beats). The “Tiṣra Jāti” descriptor means that any angas consisting of a clap 
followed by finger counts (laghu) must be three beats in length. Ādi tāḷa, whose laghu is four beats long, is more 
formally known as “Chaturaṣra Jāti Tripuṭa tāḷa.” 
30. The Indian sargam sequence “sa, ri, ga, ma, pa, dha, ni, sa” is roughly analogous to “do, re, mi, fa, sol, la, ti, do” 
in Western movable-do solfège. In the South Indian system, however, the intervals between syllables vary 
depending on the rāga. For instance, “ri” could occur in a natural form, a flat form (as in rāga Māyāmālavagowla), 
or a sharp form. 
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Figure 12. Alankāram in Tiṣra Jāti Tripuṭa tāḷa, first speed. 

 

Figure 13. Alankaram in Tiṣra Jāti Tripuṭa tāḷa, second speed. 
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Figure 14. Alankāram in Tiṣra Jāti Tripuṭa tāḷa, third speed. 

In Figure 15, I have broken each seven-syllable pattern—henceforth, the “Basic 
Pattern”—into a pair of phrases comprising three and four sargam syllables, respectively. For 
convenience, I designate the three-syllable phrase “Phrase A” and the four-syllable phrase 
“Phrase B.” I have marked phrase beginnings with bold syllables and dotted bar lines, as well 
as through phrase-based beaming in the second and third speeds. The uppermost horizontal  

 

Figure 15. Met-intervallic analysis of the Tripuṭa tāḷa alankāram’s opening melodic pattern in first, sec-
ond, and third speeds. 
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arrow in each speed indicates the Met interval across the entire, two-phrase Basic Pattern. 
Thus, for instance, the Pattern spans the interval P = (1, 2, 0) in first speed, but spans (1/2, 2, +3 
1/2) in second speed and (1/4, 2, +1 3/4) in third speed. I designate the latter two intervals P2 and 
P3, respectively. Like in Figure 11, each speed change induces an intervallic 1/2-contraction. As a 
result, while each Pattern continues to span two phrases (Y-measures), the proportion of the 
tāḷa spanned (X-measures) and resulting Y-downbeat shift values diminish. 

More interesting, perhaps, are the Y-decompositions of these intervals, indicated in 
Figure 15 by arrows spanning the individual phrases. While the phrase-spanning intervals’ X-
coordinates demonstrate a proportional shrinking within the seven-beat tāḷa as the speed 
increases, the Y-downbeat shift values represent how the phrase beginnings migrate through 
the tāḷa as the student performs the exercise. For instance, the Y-decomposition of P2 (the 
second-speed Basic Pattern interval) is 

(1/2, 2, +3 1/2) = (3/14, 1, +1 1/2) + (2/7, 1, +2), 
or 

P2 = A2 + B2 

where A2 and B2 are the intervals spanning second-speed Phrases A and B, respectively. Thus, 
one iteration of P2 shifts the Y-downbeat forward by 3 1/2 beats mod 7 (half of a tāḷa cycle), and 
this larger shift can be decomposed into smaller shifts by 1 1/2 beats (via A2) and 2 beats (via B2), 
respectively. 

The +1 1/2 downbeat shift of A2 implies a different rhythmic/metric function from the 
first-speed intervals A = (3/7, 1, +3) and B = (4/7, 1, +4), each of which contains an integer-valued 
Y-downbeat shift. Specifically, in second speed, Phrase A (via A2) continually moves the 
performer between “on-the-beat” and “between-the-beats” states.31 On the other hand, B2, with 
its integer-valued shift (+2), represents stasis: it can only maintain the “on-the-beat” or 
“between-the-beats” state generated by A2. For example, in the first statement of the second-
speed Basic Pattern, A2 shifts the Y-downbeat to a “between-the-beats” state that B2 then 
maintains, since Phrase B begins and ends between beats. When the Pattern is repeated 
starting on “ri,” A2 then shifts the Y-downbeat back into alignment with the main beat; B2 
maintains this alignment.32 

In third speed, the Y-decomposition introduces new fractional values: 

(1/4, 2, +1 3/4) = (3/28, 1, +3/4) + (1/7, 1, +1), 
or 

                                                
31. The beat state transformations generated by A2 suggest Ng’s (2005; 2006) “hemiolic cycle,” an extended hemiola 
structure Ng locates in several Brahms works. While the hemiolic cycle requires triple meter and three discrete 
beat states, Met-based transformations can be defined for any meter and for all rational-valued Y-downbeat shifts. 
32. I encourage the reader to sing or speak the second-speed line in Figure 15 while performing the kriyās (“clap, 
pinky, ring, clap, wave, clap, wave”) on each “quarter-note” beat to experience the shift and stasis to which I am 
alluding. 
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P3 = A3 + B3. 

The X-coordinate values are, unsurprisingly, rather small at this point, representing the 
Basic Pattern’s notable shrinking against the unchanging backdrop of Tripuṭa tāḷa. It is still the 
third coordinate, though—the Y-downbeat shift—that bears the most performative 
significance. Although Phrase A again transforms the music’s relationship to the beat while 
Phrase B maintains stasis, the nature of Phrase A’s change is different: rather than +1/2, the Y-
downbeat shift within A3 is +3/4. Two important points follow: (1) in relation to the beat unit 
(akṣara), A3 induces a progressive shift to the left by a quarter of a beat; and (2) four iterations of 
A3 are necessary to return to an “on-the-beat” state. To clarify, starting from the beginning of 
the third-speed exercise, one iteration of A3 (with its +3/4 shift) results in a Y-downbeat just to 
the left of the nearest beat; two iterations of A3 mean 2(+3/4) = +1 1/2, so that the new Y-
downbeat is midway between two beats; three iterations imply 3(+3/4) = +2 1/4, resulting in a Y-
downbeat just to the right of the nearest beat; and four iterations mean 4(+3/4) = +3, so that the 
“on-the-beat” state is restored. Bear in mind that through all of these repetitions, B3 (with its +1 
shift) simply maintains whatever state A3 has generated with respect to the beat. 

 To make matters more complex, recall that the Basic Pattern is stated five times 
ascending and five times descending before the original “sa” is achieved. Thus, a four-fold 
repetition of the Pattern in third speed (4P3) may restore an “on-the-beat” state, but it does not 
complete the cumulative melodic ascent. At this point, it may be useful to zoom out and again 
consider the intervals above the uppermost arrows in Figure 15. Iterating each of P, P2, and P3 
five times yields the following results (recall that the third coordinate is calculated mod 7): 

First Speed:  5P = 5(1, 2, 0) = (5, 10, 0) 

Second Speed:  5P2 = 5(1/2, 2, +3 1/2) = (2 1/2, 10, +17 1/2) = (2 1/2, 10, +3 1/2) 

Third Speed:  5P3 = 5(1/4, 2, +1 3/4) = (1 1/4, 10, +8 3/4) = (1 1/4, 10, +1 3/4) 

While each resulting boldface interval spans ten sung phrases (represented by the 
middle coordinate), the number of tāḷa cycles spanned is, with each speed increase, halved (X-
coordinate). The Y-downbeat shift values change in response, with 5P3 enacting a net Y-
downbeat shift of +1 3/4. Hence, after five third-speed Basic Pattern iterations, the performer 
will finish just short of beat three of the tāḷa (beat 1 + 1 3/4 Y-downbeat shift = beat 2 3/4). While 
five iterations of P3 complete the Basic Pattern’s ascent, they force the Y-downbeat cycle 
generated by A3 to begin anew. Similarly, in second speed, four iterations of P2 result in an “on-
the-beat” state, while the fifth iteration, which completes the Basic Pattern’s ascent, reactivates 
a “between-the-beats” state.  

Obviously, if the exercise is continued long enough, realignment with the tāḷa will 
eventually occur. In second speed, realignment occurs at the end of the exercise, after the five 
inverted Basic Pattern statements have occurred. In third speed, however, the entire exercise 
(five ascending Basic Patterns and five descending, inverted Basic Patterns = 10P3) must be 
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performed twice for realignment to occur, for 10P3 yields a +3 ½ Y-downbeat shift, while 20P3 
yields a net +7 = 0 shift. Ultimately, then, the boldface intervals above (5P2 and 5P3) must be 
doubled and quadrupled, respectively, yielding (5, 20, 0) for the entire second-speed 
performance and (5, 40, 0) for third speed. 

More important, though, are the subtle tensions between melody and tāḷa that 
materialize, transform, and disappear over the course of the alankāram, with A2 and A3 
generating new metric states and B2 and B3 prolonging these states. The Met intervals 
numerically represent the Basic Pattern’s evolving relationship with the tāḷa throughout the 
exercise, with each Pattern iteration representing a new metric experience for the performer. 
These intervals also have predictive power: for instance, one could easily calculate the metric 
implications of performing three iterations of the Basic Pattern (or its inversion) in second 
speed, thirteen iterations in third speed, or even fifty iterations in fourth speed.33 

The methods provided here need not be limited to Tripuṭa tāḷa, however. Figure 16 
presents another alankāram, this one in Chaturaṣra Jāti Dhruva tа̄ḷa, which comprises 
fourteen beats partitioned as 4 + 2 + 4 + 4.34 The figure illustrates a new Basic Pattern, which I  

 

Figure 16. Met-intervallic analysis of the Dhruva tāḷa alankāram’s opening melodic pattern in first, sec-
ond, and third speeds. 

                                                
33. Fifty iterations in fourth speed, for instance, would yield 50P4 = 50(1, 2, 0)k = 1/8 = 50(1/8, 2, +7/8) = (6 1/4, 100, 
+1 3/4). Note that at this speed, one hundred phrases only require 6 1/4 tāḷa cycles. 
34. The kriyās for this tāḷa are “clap, pinky, ring, middle, clap, wave, clap, pinky, ring, middle, clap, pinky, ring, 
middle.” 
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have partitioned into Phrases A, B, and C. Note that in first speed, Phrase A spans two angas, 
while Phrases B and C span one each. 

When these phrases are successively contracted via trikāla technique, the metric 
implications are even more complex than in the Tripuṭa tāḷa alankāram, as the melody and 
tāḷa are longer and contain more subdivisions. In second speed, one iteration of the Basic 
Pattern spans the interval 

(1/2, 3, +7) = (3/14, 1, +3) + (1/7, 1, +2) + (1/7, 1, +2), 
or 

P2 = A2 + B2 + C2. 

The composite interval P2 shows that in second speed, the three-phrase Basic Pattern 
lasts half of a tāḷa cycle and moves the Y-downbeat forward seven beats within the fourteen-
beat cycle. The values of A2, B2, and C2 indicate that Phrases B and C have mutually comparable 
metrical effects (since B2 = C2), while Phrase A, being longer, has differing implications. In fact, 
the intervals A2 = (3/14, 1, +3) and B2 = C2 = (1/7, 1, +2) provide a key to understanding how the 
metric function of Phrase A differs from that of B and C.   

First, the interval A2, with its +3 Y-downbeat shift, has the power to enact a parity shift, 
moving the Y-downbeat from an even beat to an odd beat within the tāḷa, or from an odd beat 
to an even beat.35 Consider, for instance, the first iteration of A2 in Figure 16 (middle system, 
first six notes). This interval shifts the Y-downbeat from beat 1, an odd beat, to beat 4, an even 
beat. B2 and C2, on the other hand, with their +2 Y-downbeat shifts, maintain the given parity, 
moving the Y-downbeat to beats 6 and 8, respectively. From this point, A2 enacts another Y-
downbeat shift to restore odd parity, which B2 and C2 then maintain.   

Notions of parity shift (A2) and parity preservation (B2 and C2) have special significance in 
the current tāḷa. Namely, unlike in Tripuṭa tāḷa, the anga-initiating claps in Dhruva tāḷa 
consistently fall on odd beats (1, 5, 7, and 11). Thus, when A2 shifts the Y-downbeat from odd to 
even parity, the subsequent B and C phrases become skewed with respect to the odd-beat 
claps, expressing a new tension with the tāḷa. This tension is only resolved when Phrase A 
reappears, restoring odd parity to the Y-downbeat via A2. 

The third-speed version of this alankāram introduces new roles for Phrases A, B, and C, 
as suggested by the intervallic decomposition 

(1/4, 3, +3 1/2) = (3/28, 1, +1 1/2) + (1/14, 1, +1) + (1/14, 1, +1), 
or 

P3 = A3 + B3 + C3, 

spanning one iteration of the Basic Pattern. While A3, B3, and C3 span the same number of Y-
                                                
35. My notion of “parity shift” recalls Ng’s (2005, 183) notion of the “duple opposition,” which is the perceived 
reversal of strong and weak beats in duple meter. 
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measures as their first- and second-speed counterparts (1 Y-measure apiece, for a total of 3 Y-
measures within P3), the X-measure and Y-downbeat shift values significantly differ. In 
particular, the X-coordinate of P3 shows that the Basic Pattern now spans a quarter of a tāḷa 
cycle, generating an overall Y-downbeat shift by +3 1/2 (mod 14). Now, recall that because of A2, 
each statement of P2 = (1/2, 3, +7), with its +7 net Y-downbeat shift, resulted in a Y-downbeat 
parity shift. Each P3 statement, however, moves the Y-downbeat between “on-the-beat” and 
“between-the-beats” states, much like what occurred in the second-speed Tripuṭa tāḷa 
alankāram. 

 The A3, B3, and C3 intervals indicate the origins of these new states. As in the second-
speed Tripuṭa tāḷa alankāram, the Phrase A interval (A3), with its +1 1/2 Y-downbeat shift, is the 
musical agent that moves the Y-downbeat onto or off of the beat. B3 and C3, with their +1 Y-
downbeat shifts, maintain the on- or off-the-beat state generated by A3, much like B2 in the 
Tripuṭa tа̄ḷa alankāram. Now, observe that in third-speed Dhruva, two Basic Pattern iterations 
generate the new interval  

2P3 = 2(1/4, 3, +3 1/2) = (1/2, 6, +7). 

Thus, six phrases (two Basic Patterns) in third-speed Dhruva span half of the tāḷa cycle 
and generate a 7-beat Y-downbeat shift—another parity shift. Two more Basic Patterns will, 
then, fill out the tāḷa cycle and restore the original parity, yielding the interval 

4P3 = 4(1/4, 3, +3 1/2) = (1, 12, 0). 

 As in Tripuṭa tа̄ḷa, though, the alankāram’s overall structure consists of five ascending 
Basic Patterns followed by five descending Basic Patterns, the last of which ends on the low 
“sa” on which the exercise began. Thus, the entire third-speed alankāram (with no repetitions) 
generates the interval 

10P3 = 10(1/4, 3, +3 1/2) = (2 1/2, 30, +35) = (2 1/2, 30, +7). 

The resulting Y-downbeat, then, is in the middle of a tāḷa cycle. Because the exercise cannot 
end in the middle of the tāḷa, it must be iterated until the Y-downbeat returns to beat 1. Thus, 
since the whole exercise in third speed (10P3) yields the interval (2 1/2, 30, +7), two performances 
yield 2(2 1/2, 30, +7) = (5, 60, 0). This is the minimum number of iterations needed to restore Y-
downbeat alignment, spanning five full tāḷa cycles and 60 phrases, or 20 Basic Patterns. 

 In sum, these analyses of the Tripuṭa and Dhruva tāḷa alankārams suggest several ways 
in which Met intervals can model trikāla technique. First, the evolving relationships between 
the tāḷa and the melodic/rhythmic phrasing are encapsulated in the three Met interval 
coordinates. In particular, the Y-downbeat shift values imply differing metric roles for the 
phrases making up the Basic Pattern. More importantly, they depict the evolving challenges 
experienced by the singer, who must manage several simultaneous metric strands whose 
mutual relationships are in flux. As such, in representing the shifting metric states (Y-
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downbeat parity, on- vs. off-beat states, and so forth), the Met intervals model a crucial 
component of the musical experience.  

Additionally, the GIS-based mathematics allows one to predict the implications of 
iterating a melody at multiple speeds. While the previous examples only considered first, 
second, and third speeds, one could easily calculate Met intervals for faster speeds such as 
fourth and fifth speeds. On the one hand, these calculations predict local interactions between 
melodic phrasing and tāḷa, allowing precise analysis of phrases’ varied metric roles. On the 
other hand, the calculations can reveal aspects of global melodic structure, such as the 
number of pattern iterations necessary to restore alignment with the downbeat (sam) at a given 
speed. The power of the Met intervals, in these situations, results from their capability of 
measuring linear time (number of tāḷa cycles and melodic units spanned) and modular time 
(position within a tāḷa cycle) simultaneously.36 Additionally, the intervals reify specific forms of 
metric tension so that they may form part of an analytical narrative. Overall, the mathematics 
can provide a useful model of the moment-to-moment experience of performing the 
alankārams in multiple speeds, while also revealing the implications of trikāla technique on a 
broader scale. 

ANALYSIS: RTP PERFORMANCE REVISITED  

Having examined the rhythmic/metric subtleties of the pedagogical alankāram exercises, 
I now return to the virtuosic RTP performance that opened this study (Figure 3) and attempt to 
gain deeper insights into the trikāla section using Met. Recall that the basic pallavi melody 
consists of A and B phrases, and the underlying tāḷa is Miṣra Cāpu (3 + 2 + 2). Figure 17 presents 
a Met-intervallic interpretation of the first full A–B melodic statement. Note that the overall 
intervallic span of the melody, Y-decomposed, is  

(4, 6, 0) = 4(1/2, 1, +3 1/2) + 2(1, 1, 0), 

where the 4(1/2, 1, +3 1/2) portion corresponds to the A phrase and the 2(1, 1, 0) portion to the 
B phrase. The phrases’ defining intervals—(1/2, 1, +3 1/2) and (1, 1, 0), respectively—reflect their 
differing relationships to the tāḷa. 

As to the nature of these relationships, Widdess (1977, 64) convincingly argues that A and 
B are in “two different tempi” against the constant tāḷa, with A “twice as fast” as B. The above 
Met intervals suggest a way to clarify this observation. Namely, the basic (1/2,	1,	+3 1/2) and 
(1,	1,	0) intervals defining A and B, respectively, are related by a simple 2-expansion, as an 
application of Proposition	2 reveals: 

(1/2, 1, +3 1/2)k=2 → (2 ⋅ 1/2, 1, 2 ⋅ +3 1/2) = (1, 1, +7) = (1, 1, 0), 

                                                
36. My conceptions of linear and modular time here correspond roughly to Morris’s (1987) “measured time,” or 
“m-time” (299), and “modular time of order n” or “mod-time” (301–302). 
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Figure 17. Met-intervallic span of basic RTP melody: (4, 6, 0) = 4(1/2, 1, +3 1/2) + 2(1, 1, 0). 

where the last equality holds because the X-meter (tāḷa) has value 7, and +7 ≡ 0 (mod 7). The 
transformed Y-downbeat shift value (+3 1/2 → 0) shows that this 2-expansion locally stabilizes 
the Y-downbeat, resulting in a constant Y-downbeat location of 2 throughout the B portion of 
the melody.  

I represent this 2-expansion in Figure 17 by a dashed arrow connecting the basic A and B 
intervals. Observe that the entirety of B is not a perfect 2-expansion of A, however, as a full 2-
expansion of A would generate 4(1,	1,	0) instead of 2(1,	1,	0). Thus, while B certainly responds to 
and grows out of A, it also maintains a degree of independence.37 

Given how trikāla operates, in addition to this internal 2-expansion, it would be 
reasonable to expect several levels of uniform expansion or contraction of the entire melody. 
As such, one can easily calculate several possible integer expansions of the (4,	6,	0) interval 
spanning the melody using Proposition 2—recall that for any positive integer k, the k-
expansion of (x, y, a) is given by (kx, y, ka): 

(4, 6, 0)k=2 → (2 ⋅ 4, 6, 2 ⋅ 0) = (8, 6, 0); 
(4, 6, 0)k=3 → (3 ⋅ 4, 6, 3 ⋅ 0) = (12, 6, 0); 
(4, 6, 0)k=4 → (4 ⋅ 4, 6, 4 ⋅ 0) = (16, 6, 0). 

In fact, all three of these macro-expansions are manifested in the performance, as 
Figures 18, 19, and 20 illustrate. Figure 18 presents a 2-expansion that immediately follows the 
                                                
37. In addition to rhythmic/metric considerations, note the similarity between the openings of A and B in terms of 
the pitches (swaras) employed. 
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first A–B melodic statement. The original melody appears in the upper bracketed region, while 
the 2-expanded melody appears below, spanning the interval 

(8,	6,	0) = 4(1, 1, 0) + 2(2, 1, 0). 

Significantly, all Y-downbeat shifts are neutralized to zero at this level of expansion, meaning 
that every Y-measure at this level must begin on beat 2 of the tāḷa.  

Figure 19 presents the passage that follows the 2-expanded melody. Observe that this new 
passage is a 3-expanded variant of the original melody, spanning the interval 

(12, 6, 0) = 4(1 1/2, 1, +3 1/2) + 2(3, 1, 0).  

In this case, while the Y-downbeat within the B phrase remains stable, the Y-downbeat of A 
has begun shifting again, each time by half of a tāḷa cycle (+3 1/2). Moreover, as demonstrated 
by the X-coordinates, each Y-measure of A is now 1 1/2 āvartas long, so for the first time, the Y-
measures of A surpass a full tāḷa cycle.  

 

Figure 18. Met-intervallic 2-expansion of opening interval: (8, 6, 0) = 4(1, 1, 0) + 2(2, 1, 0). 
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Figure 19. Met-intervallic 3-expansion of opening interval: (12,	6,	0) = 4(1 1/2,	1,	+3 1/2) + 2(3,	1,	0). 

Finally, Figure 20 demonstrates the 4-expansion of the pallavi melody following the 
passage in Figure 19. Here the expanded melody’s overall Met interval is 

(16, 6, 0) = 4(2, 1, 0) + 2(4, 1, 0). 

This passage marks the apex of the successive intervallic expansions; B, in particular, 
now has extremely long Y-measures, each lasting four full tāḷa cycles. Additionally, all Y-
downbeat shifts are again neutralized within both A and B phrases. Audio Example 5 presents 
the 3- and 4-expansions of the pallavi melody. While listening, please note the locations of the 
claps marking the second and third angas of each āvarta and observe the evolving relationship 
between the tāḷa-bound claps and the melody.  

Figure 21 summarizes the progress of the melodic expansions thus far and indicates the 
contractions that will follow. The top half of the diagram presents the opening melodic 
interval, (4,	6,	0), and the 2-, 3-, and 4-expansions that follow. I have also included an alternative 
conception of these expansions: if expansion values are calculated according to consecutive 
intervals rather than always in reference to the opening interval, the initial 2-expansion is 
followed by a 1 1/2-expansion and a 1 1/3-expansion. Note that from this perspective, the 
expansion factors are steadily decreasing.38 The bottom half of the diagram summarizes the 
intervallic transformations over the remainder of the trikāla excerpt. In this case, a series of  

                                                
38. If k-expansions of (4, 6, 0) are allowed for arbitrarily large k, then the corresponding k-values of the consecutive 
interval expansions will, in fact, tend to k = 1. 
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Figure 20. Met-intervallic 4-expansion of opening interval: (16,	6,	0)	=	4(2,	1,	0)	+	2(4,	1,	0). 

Audio Example 5. 3- and 4-expansions of the basic A–B melody. 

 

Figure 21. Successive expansions and contractions of the opening interval, (4,	6,	0) = 4(1/2,	1,	+3 1/2) + 
2(1,	1,	0), across the trikāla portion of the RTP performance. 

http://www.aawmjournal.com/sound/2020a/Wells_Audio_005.mp3
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successive contractions undoes all of the k-expansions and ultimately restores the original 
(4,	6,	0) interval. 

Amidst all of these macro-expansions and contractions, however, the aforementioned 
internal 2-expansion from A to B is still active, albeit at changing levels of pulse. Additionally, 
it is important not only to consider the various k-values, but to observe what is happening to 
the Met intervals themselves. Namely, note that only the X-coordinate is changing across these 
expansions and contractions, as the A–B melody always consists of six Y-measures and the net 
Y-downbeat shift is always zero, even if internal melodic units enact nonzero shifts. 

In fact, an even stronger statement can be made concerning the net Y-downbeat shifts: 
for any positive integer k, the k-expansion of the A–B melody must enact an overall Y-
downbeat shift of zero. This follows from Proposition 2, as the “0” coordinate of (4,	6,	0) 
becomes k ⋅ 0 ≡ 0 (mod 7) for any value of k. Thus, whether k is equal to 2 or 2,000, the net Y-
downbeat shift of the k-expanded melody will be zero, even within the asymmetrical Miṣra 
Cāpu tāḷa (7-meter). As a result, any positive integer expansion of the melody must, like the 
original melody, begin and end on beat 2 of the tāḷa. 

While the zero-valued Y-downbeat shifts, predictable scaling of Y-decompositions, and 
number of Y-measures in the melody (six) represent retained properties in the performance’s 
melodic expansions and contractions, other aspects of the relationship between melody and 
tāḷa change dramatically. Specifically, a special intervallic decomposition I henceforth call the 
anga decomposition is often drastically altered in expansions and contractions. The anga 
decomposition functions similarly to the Y-decomposition, breaking a Met interval into 
subintervals. However, rather than decomposing intervals at Y-downbeats, this decomposition 
breaks up intervals according to anga boundaries, making it uniquely suited to analysis of 
Indian classical music.39  

Figure 22 presents the anga decompositions of the four (1/2, 1, +3 1/2) intervals in the 
unexpanded melody’s A phrase. Observe that intervallic decompositions occur anytime a solid 
bar line (single or double) appears in the transcription. Thus, while each Y-measure generates 
the same Met interval (1/2, 1, +3 1/2), these intervals anga-decompose non-uniformly. 
Specifically, while the first and third intervals decompose as 

(1/2, 1, +3 1/2) = (2/7, 4/7, 0) + (3/14, 3/7, +3 1/2), 

the second and fourth decompose as 

(1/2, 1, +3 1/2) = (1/14, 1/7, 0) + (2/7, 4/7, 0) + (1/7, 2/7, +3 1/2). 

One immediately visible difference in the decompositions is the number of 
subintervals—two in the first case versus three in the second case. Moreover, while both 
                                                
39. For more on the anga decomposition as a component of Met-based analyses of Carnatic music, see Wells 
(2015a, 235–38). 
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Figure 22. Met-intervallic span of A phrase, with basic intervals anga-decomposed. 

decompositions contain the subinterval (2/7, 4/7, 0), the remaining intervallic span (3/14 X-
measures) is undivided in the first case and split asymmetrically in the second case.  

In contrast, consider the 2-expansion of A, shown in Figure 23. While the anga 
decompositions of the unexpanded Y-measures exhibit marked differences, each Y-measure of 
2-expanded A has the same anga decomposition, 

(1, 1, 0) = 3(2/7, 2/7, 0) + (1/7, 1/7, 0). 

Thus, the 2-expansion not only neutralizes the Y-downbeat shifts (+3 1/2 → 0), as discussed 
previously, but regularizes the relationship between melody and tāḷa. The anga 
decompositions therefore highlight new rhythmic/metric implications that the Y-
decompositions missed. 

 

Figure 23. 2-expanded variant of A, with basic intervals anga-decomposed. 
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Next, consider the effect of the 2-expansion on the B phrase of the melody. Figure 24 
presents unexpanded B with Met-intervallic annotations. As shown below the transcription, 
both Y-measures of B anga-decompose to yield 

(1, 1, 0) = 3(2/7, 2/7, 0) + (1/7, 1/7, 0), 

which is the same anga decomposition that characterized 2-expanded A. Before considering 2-
expanded B, recall that the Y-measures of unexpanded A had varying anga decompositions, 
while all Y-measures of 2-expanded A had the same anga decomposition. Thus, the 2-
expansion transformed a non-uniform anga decomposition into a uniform one, representing a 
local reduction in the complexity of the phrase-tāḷa relationship. 

A similar decrease in intervallic complexity does not occur when B is 2-expanded, 
however, as Figure 25 illustrates. In this case, rather than a “non-uniform-to-uniform” process, 
the Y-measures of 2-expanded B still have identical anga decompositions, implying a 
“uniform-to-uniform” process. Thus, whether B is 2-expanded or unexpanded, the Y-measures 
have a constant relationship with the tāḷa. The specifics of the decomposition change 
drastically in the expansion, though, for there are now seven components comprising three 
distinct Met intervals (due to repetitions): 

(2, 1, 0) = 3(2/7, 1/7, 0) + (3/7, 3/14, 0) + 2(2/7, 1/7, 0) + (1/7, 1/14, 0). 

Therefore, the 2-expansion operation substantially increases the Met-intervallic complexity of 
B, despite the apparently subtle change in B’s Y-decomposition from 2(1, 1, 0) to 2(2, 1, 0). 

Unsurprisingly, as A and B are expanded two more times (3-expansion and 4-expansion), 
the numbers of components in the anga decompositions continue to increase, with the 4-
expansion of B containing the most components (thirteen). Table 1 provides the Met-intervallic 
details. Notably, while the Y-measures of B continue to decompose uniformly at the new 
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Figure 24. Met-intervallic span of unexpanded B, with basic intervals anga-decomposed. 

 

Figure 25. 2-expanded variant of B, with basic intervals anga-decomposed. 

Intervals to be Decomposed Anga Decompositions 

3-expanded A: first and third Y-
measures 

 (1 1/2, 1, +3 1/2) = 3(2/7, 4/21, 0) + (3/7, 6/21, 0) 
+ (3/14, 3/21, +3 1/2) 

3-expanded A: second and fourth Y-
measures 

 (1 1/2, 1, +3 1/2) = (1/14, 1/21, 0) + (2/7, 4/21, 0) 
+ (3/7, 6/21, 0) +  

2(2/7, 4/21, 0) + (1/7, 2/21, +3 1/2) 

3-expanded B: all Y-measures 

 (3, 1, 0) = 3(2/7, 2/21, 0) +  
(3/7, 3/21, 0) + 2(2/7, 2/21, 0) +  
(3/7, 3/21, 0) + 2(2/7, 2/21, 0) +  

(1/7, 1/21, 0) 

4-expanded A: all Y-measures  (2, 1, 0) = 3(2/7, 1/7, 0) + (3/7, 3/14, 0) + 2(2/7, 
1/7, 0) + (1/7, 1/14, 0) 

4-expanded B: all Y-measures 
(4, 1, 0) = 3(2/7, 1/14, 0) +  

3[(3/7, 3/28, 0) + 2(2/7, 1/14, 0)] +  
(1/7, 1/28, 0) 

Table 1. Anga decompositions of the Met intervals defining 3-expanded and 4-expanded variants of A 
and B. 

expansion levels, the Y-measures of A do not. Specifically, while 4-expanded A consists of Y-
measures that all anga-decompose in the same way, 3-expanded A returns to non-uniformity, 
thereby recalling unexpanded A. Thus, while the successive expansions of A and B express 
increasing tension with the tāḷa due to their growing numbers of anga decomposition 
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components and transforming interval values, the A phrase evinces an additional sense of 
instability due to its alternation between uniform and non-uniform decompositions. This 
instability continues to play a role even as the expansions yield to contractions in the latter 
portion of the trikāla section (see Figure 21). 

The final melodic material the listener hears is the metrically unstable A phrase in its 
original, unexpanded form with non-uniform internal anga decompositions. Thus, it would be 
reasonable to expect the performers to provide some sort of metric closure to the trikāla 
presentation in anticipation of the swara kalpana section that follows, in which the musical 
focus shifts back to melody and rāga. In fact, after the final A statement, the mridangam takes 
over the metric narrative, further amplifying the metric tension through a brief cadenza. Using 
Met can not only help describe this amplification in precise, quantifiable terms, but can yield 
some performative insights. Figure 26 presents a transcription of this cadenza with analytical 
annotations.40 My notation of the mridangam part (after Widdess 1977) begins at the start of 
the cadenza, for while the mridangam player (T. Ranganathan) has been playing up to this 
point, his role has primarily been accompanimental. The excerpt can be heard in Audio 
Example 6.  

The beginning of the transcription depicts the end of A and the final two generated (1/2, 1, 
+3 1/2) intervals. These intervals allow a sort of dovetailing between the melody and the 
mridangam cadenza, as the cadenza begins with five statements of (1/2, 1, +3 1/2). However, this 
key interval has been recontextualized: rather than generating alternating Y-downbeats on 
beats 2 and 5 1/2, as the original A phrase did, the Y-downbeats now alternate between 3 1/2 
and 7.41 In one sense, the passing of (1/2, 1, +3 1/2) to the mridangam suggests a conclusion to the 
metric narrative that has defined the trikāla portion of this performance, as this interval served 
as a point of departure for the progressive metric transformations. Its return therefore brings 
the listener full circle.  

Mathematically, though, there is no way Ranganathan can end the cadenza on sam (beat 
1 of the tāḷa) without breaking free of this characteristic interval. Thus, starting in tāḷa cycle 71, 
he begins incorporating Y-measures that have been shortened by half of a beat (one “sixteenth 
note”), generating repetitions of the new interval (3/7, 1, +3). This seemingly small rhythmic 

                                                
40. While Widdess (1977, 74) hears a series of 7-units partitioned as 3+2+2 starting where my mridangam notation 
begins, I hear a 2+2+3 partition beginning where indicated. This interpretation permits hearing five “6/16” Y-
measures from tāḷa cycle 71 through the end of the excerpt rather than a series of eleven “3/16” Y-measures, thus 
highlighting symmetric aspects of the cadenza (five “7/16” Y-measures + five “6/16” Y-measures). Additionally, the 
2+2+3 partitioning recalls the consistent metric subdivisions of A throughout the trikāla improvisation. 
41. Between the end of A (disregarding the sustained “sa” pitch) and the start of the mridangam cadenza, a Y-
downbeat shift of +1 1/2 somehow occurs. There are essentially two explanations for this shift. One is that it is 
accomplished via the interval (3/14, 1, +1 1/2), which bridges the gap between the melodic and mridangam intervals 
in the top line of Figure 26. Effectively, this interval spans a mini Y-measure of 1½ beats. The second option is to 
hear this “mini-measure” not as an independent Y-measure, but as an extension of the previous (1/2, 1, +3 1/2) 
interval—i.e., the final Y-measure of A lasts longer than one initially expects. This would mean that the latter 
interval becomes a (5/7, 1, +5) leading directly into the start of the mridangam cadenza. 
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change is significant in the context of 7-meter, for it allows the Y-downbeat to begin cycling 
through all of the integer downbeat locations.42 Moreover, this is the first recurring, Y- 

 

Figure 26. Mridangam cadenza at end of trikāla section. Transcription after Widdess (1977), metrically 
reinterpreted and with rhythmic and Met-intervallic annotations by the author. 

Audio Example 6. Mridangam cadenza at end of trikāla section. 

                                                
42. Because the new interval has a Y-downbeat shift value of +3, iterating this interval will yield shifts of the form 
+3x (mod 7), where x is a positive integer. An elementary result in mathematical group theory is that any group 
with prime order (such as the additive integers mod 7) is cyclic and can be generated by any single group element 
(see, for instance, Fraleigh and Katz 2003, 100–101, Corollary 10.11). Thus, successive +3 shifts—namely, taking x = 1, 
x = 2, etc., in the above formula—will cycle through all possible integer-valued Y-downbeat shifts in 7-meter, 
resulting in a corresponding cycling through all possible Y-downbeat locations. 

http://www.aawmjournal.com/sound/2020a/Wells_Audio_006.mp3
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measure-spanning interval in the trikāla section that cannot be generated by an integer 
expansion of (1/2, 1, +3 1/2). As such, it exhibits a certain independence from the performance’s 
other characteristic intervals. 

Additionally, observe that the series of new intervals begins on beat 7 of the tāḷa. In order 
for X- and Y-downbeats to realign at the end of the trikāla section, a net Y-downbeat shift of +1 
is necessary. The central question, then, is how many iterations of (3/7, 1, +3) are necessary to 
accomplish this shift. Basic modular arithmetic could certainly help answer this question; 
namely, achieving a value of +1 modulo 7 only requires adding +3 to itself five times. In fact, 
Ranganathan iterates the new phrase length exactly five times in the performance, as shown in 
Figure 26. Ranganathan’s experience undoubtedly allows him to make this determination in 
the midst of performance using traditional methods. In particular, Iyer (1988) describes how a 
drummer might quickly determine, from any location in the tāḷa, how many phrases of a given 
length and speed are necessary to conclude on sam. Iyer lists numerous numerical formulas 
that a drummer can internalize to arrive on sam artfully via expressive rhythmic shapes.  

Whether one uses modular arithmetic or traditional formulas, however, it is clear that 
five iterations of the six-“sixteenth-note” phrase length are needed to arrive back on sam. 
Intervallically, this yields 5(3/7, 1, +3) = (2 1/7, 5, +1) across all five phrases. The resulting 
cumulative interval shows that the arrival on sam occurs just over two tāḷa cycles after the six-
pulse phrases began, accompanied by a net +1 Y-downbeat shift (as desired). In the spirit of 
Lewin, one can view the component (3/7, 1, +3) intervals not as mere statistics, but as signifiers 
in an overall metric narrative. While (1/2, 1, +3 1/2) has opening and closing function in the 
trikāla section of the RTP performance, (3/7, 1, +3) suggests new functional meaning. Notably, 
this interval has not occurred previously in the trikāla region, so its occurrence just before the 
swara kalpana suggests dual closing and transition functions.  

The overarching metric story during the trikāla section, then, involves successive 
expansions of (1/2, 1, +3 1/2), followed by successive contractions to restore the original interval, 
and finally concluding with a new (3/7, 1, +3) interval that drives this portion of the 
performance to a close. While certain aspects of the original (1/2, 1, +3 1/2) interval are preserved 
(e.g., the 1-Y-measure span and the seven-pulse length at some metric level) in the process of 
expansion and contraction, other key aspects are transformed. For instance, the Y-downbeat 
shift value is neutralized to zero in all performed expansions except for k = 3, while the internal 
anga decompositions dramatically increase in complexity as k increases. With respect to the 
transforming anga decompositions for both the A and B phrases, the 4-expanded version of B, 
shown in Figure 20, marks an apex. Namely, the phrase’s unassuming (4, 1, 0) interval—the 8-
expansion of (1/2, 1, +3 1/2)—yields a staggering thirteen-component anga decomposition (see 
Table 1) whose component intervals are, moreover, distributed asymmetrically. The Met 
intervals reveal, then, that the climactic 4-expanded B phrase, whose melodic content is 
deceptively simple, is one of the most metrically intense portions of the performance. More 
generally, the intervallic narrative precisely depicts the evolving relationships between tāḷa and 
melodic phrasing in this RTP performance, representing both the local tensions between 
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melody and tāḷa and the broader metric progressions that define the trikāla section.  

CONCLUSION  

A few final thoughts are in order. First, with respect to the latter analysis, while local 2-
expansions from A to B occur throughout the trikāla performance, originally via the 
transformation 

(1/2, 1, +3 1/2)k=2 = (1, 1, 0), 

these mini-expansions later acquire new meaning (i.e., Met intervals with different sorts of 
properties) through macro-expansions and contractions. In particular, when the melody is 
uniformly expanded by 2, 3, and 4, the following new local transformations from A to B result: 

(1, 1, 0)k=2 → (2, 1, 0); 
(1 1/2, 1, +3 1/2)k=2 → (3, 1, 0); 

(2, 1, 0)k=2 → (4, 1, 0). 

As such, the contextual effect of the 2-expansion operation evolves as local pulse units change 
via the macro-expansions. 

 The RTP analysis also demonstrated a striking balance between stability and change as 
the trikāla improvisation progresses. In particular, while the A–B melody’s cumulative Y-
downbeat shift of zero and predictable Y-decompositions at various pulse levels represent 
stability, the chaotic, unpredictable effect of the expansions/contractions on anga 
decomposition suggests a dynamic instability. Moreover, while the expansions and 
contractions have predictable intervallic consequences, the resulting intervals are new (in the 
context of this performance) and specify transformed relationships between tāḷa and melody, 
even while being derived from old intervals. 

 The alankāram exercises suggested a similar balance between stability and change. As 
the performer moves from first speed through second and third speeds, the component 
phrases in each exercise retain their melodic shape and swara structure, while the evolving 
Met intervals illuminate new contextual functions for each phrase with respect to the tāḷa. 
These phrase functions are not mere theoretical abstractions, but reflect key aspects of the 
performance experience. 

In this regard, I present a few closing remarks about Met theory and its appropriateness 
for analyzing Carnatic music. First, while it might be tempting to conceive of the metric 
expansions and contractions as independent of the tāḷa, Indian tradition holds that all 
rhythmic formations, regardless of complexity, must be understood in relation to the tāḷa.43 

                                                
43. Ramanathan and Venkataram (1997), in an analysis of the varnam “Ninnukori,” highlight how the 
“simultaneous presence of the basic rhythmic pattern of 4 established by the tala accent and the 5, 6 etc. formed 
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Thus, the Met intervals, which address not only the tāḷa and melodic/rhythmic layers (X- and 
Y-coordinates, respectively), but also the layers’ interrelations (Y-downbeat shift coordinate), 
depict the multiple simultaneous dimensions performers must have under constant control. 
Indeed, while one could, perhaps, criticize the three-coordinate Met intervals as unnecessarily 
complex, I would argue that if even one intervallic coordinate were missing, part of the musical 
picture would be unrepresented. In particular, without the X-coordinate, the intervals ignore 
the flow of the unfolding tāḷa; without the Y-coordinate, the intervals miss the phrases and 
groupings that create expressive tension with the tāḷa; and without the Y-downbeat shift 
coordinate, there is no explicit representation of the interactions between the 
melodic/rhythmic and tāḷa layers. Each of these aspects is essential for representing the 
multidimensional rhythmic/metric experience in Carnatic music. 

While the theory and analyses in this article may be useful in their own right, they also 
suggest several directions for further study. First, one could use Met to investigate Carnatic 
trikāla usages in further contexts—not only in RTP form and the alankāram exercises, but also 
musical forms such as geethams and varṇams and improvised percussion solos.44 One might 
also study the broader theoretical possibilities for implementing trikāla technique in the many 
available tāḷas: what are the intervallic consequences of expansion/contraction by various 
factors, and how are anga decompositions affected? Moreover, how are the same intervals 
affected when k-expanded in different tāḷas? Also revealing would be a corpus study of 
common Met intervals appearing in Carnatic music and their most frequently occurring 
expanded and contracted forms. In sum, the current study has provided but a glimpse into the 
diverse possibilities for analyzing pulse transformation in Carnatic music using Met. It is my 
hope that further study will not only address the additional avenues of exploration suggested 
here, but will generate new questions about the interactions between rhythm, melody, and tāḷa 
in this remarkably rich music. 
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by the melodic accents bestow a peculiar charm on the over-all rhythmic colour of the song” (65). In other words, 
it is not the melodic accents on their own that are of greatest musical interest, but their counterpoint with the tāḷa 
accents. 
44. The geetham and varṇam are forms intended to develop one’s musical technique, much like the Western 
classical étude. In addition to helping a student practice characteristic rāga phrases in context, these compositions 
aid in the student’s understanding of rhythm and time, as they are practiced (and, in the case of varṇams, 
performed) in multiple speeds over constant tāḷa. See Subramaniam and Subramaniam (1995, 80–82) and Pesch 
(1999, 84–85). 
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